Closed Fuel Cycle Opportunities: Advanced fuel form & waste form development nitrides (oxides) fuel form transmutation (incineration) Pu,Np,Am,Cm < # Radiation-Induced Thermal Conductivity Degradation # Radiation-Induced Thermal Conductivity Degradation ## Grand Challenge To predict the performance of various classes of materials in hostile environments and to identify materials with optimum properties for specific applications. #### Can we predict radiation tolerance? We need to better understand radiation damage mechanisms. ## **Key Opportunity** A national, extensive, comprehensive, fundamental program to perform systematic investigations of materials' response to hostile irradiation environments. Systematic studies are far superior to the current modus operandi, a potpourri of in-pile irradiations, with engineering decisions based on (naïve at best) 'survives/falls apart' performance criteria. ### Key Opportunity: Systematic Investigations - Impurities (effects on atomic mobility, radiation damage response) (FP retention) - Stoichiometry (UO_{2+x} ; ZrO_{2-x}) (effects on defect mobility, radiation damage response) - *Disorder* (A_xB_yO_z) (effects on atomic mobility, radiation tolerance) - Bonding (role of ionicity on radiation tolerance; modeling charge transfer) - Structure (radiation tolerance sequence in sesquioxides: ABO₃ perovskites < AAO₃ corundums < ABO₃ ilmenites < AAO₃ bixbyites) Why?